Woodlands Healing Research Center

Jump to an article in this section:
Or jump to a new section:


The health of the membrane is synonymous with the health of the entire organism. Toxins have an affinity for fatty acids; they literally take up residence in the lipid environment and in so doing, weaken and disrupt. The probable result is early apoptosis, premature death of the cell. Generally, normal mitosis provides for new cellular growth to maintain the health of the body, i.e. the previous discussion on photo receptors. However, toxicity's affinity for lipids can easily redistribute toxins and diseased toxic lipids into the new growth. In a healthy state with adequate glutathione and ascorbate to bind the toxins before they take up new residence, the body can keep the bad guys under control. However, if defenses are weak, toxins can continually be redistributed and eventually hide in the CNS and bone where the regeneration process is at a slower pace. The goal of detoxification is to 1) encourage regrowth with a renewed effort at the correct balancing of the essential nutrients, with the exchange of high energy lipids (PUPA and HUP A) to fuel regeneration and the eventual detoxification process; and 2) at the correct time, the inclusion of the toxin removal specialists, ascorbate, chlorella, and if possible IV glutathione.

Detoxification of neurotoxins requires that the cell membrane is nourished with balanced essential fatty acids (4:1, plus HUFAs) and supportive phospholipids. Phosphatidylcholine (PC) is the most abundant phospholipid of the cell membrane and protects the liver, with its 33,000 square meters of membrane, against toxicity and infection. The liver plays a pivotal role in detoxification but due to its fatty acid content and the lipid soluble characteristics of neurotoxins, lipid based interventions are required to impact toxic burdens. Once the liver has been damaged it can no longer metabolize fats normally. Pools of lipids are then deposited within hepatocytes throughout the liver. Beta oxidation of fatty acids is suppressed impairing detoxification and prostaglandin production. Extensive research with PC has revealed that it protects the liver against damage from alcohol, pharmaceuticals, environmental pollutants, xenobiotics and infection due to viral, bacterial and fungal manifestations (Lieber 1994a, 1994b, 1995, 2001a, 2001b).

Hypercholesterolemia and Atherosclerosis 

Phosphatidylcholine increases the solubility of cholesterol and thereby decreases its ability to induce atherosclerosis. Phosphatidylcholine also aids in lowering cholesterol levels, removing cholesterol from tissue deposits, and inhibiting platelet aggregation. (Brook, JG, Linn, S, and Aviram, M. Biochem Med Metabol Biol. 35;31-39, 1986.) Here some of the beneficial effects may be attributable to the high content of linoleic acid in phosphatidylcholine.

  • The phospholipid preparation Lipostabil has been researched for use in the treatment of high cholesterol levels and atherosclerosis. In several trials evaluating this 70% phosphatidylcholine content lecithin product from Germany, total serum cholesterol and triglyceride levels dropped significantly and HDL cholesterol levels improved using dosage ranging from 1.5 g once daily to 3.5 g three timed per day. (Lipostabil. Natterman International GMBH,1990; Wojcicki, J, et al. Phytotherapy Res. 9;597-599, 1995)
  • A high-concentration phosphatidylcholine preparation, marketed in Germany under the trade name "Essentiale", has produced clinical results consistent enough to gain authorization from the BGA, the German equivalent of the FDA. This form contains 90% phosphatidylcholine, with 50% of the molecule having linoleic acid, the essential fatty acid, bound at the proper position; i.e., the first and second carbon of the glycerol molecule. Using this preparation the standard dosage recommendation is 350 mg three times per day with meals. (Essentiale, Natterman International GMBH, 1989.)

Bipolar Depression 

  • There is evidence that mania is associated with a reduced brain cholinergic activity. Phosphatidylcholine supplementation at levels of 15-30 g/day has been found to exert beneficial effects in the treatment of bipolar depression. (Wutman, R, et al. Nutrition and the Brain. Vol. 5. Raven Press: New York, 1979; Cohen, B, et al. Am J Psychiat 137:242-243, 1980; Cohen, B, et al. Am J Psychiat 139;1162-1164, 1982.)
  • The use of phosphatidylcholine may result in significant improvement or amelioration of symptoms in some patients suffering from bipolar depression by increasing brain choline levels. Some researchers believe that one effect of Lithium carbonate, the standard pharmaceutical treatment for bipolar depression, is the promotion of increased acetylcholine activity in the brain. (Jope, R, et al. Am J Psychiat 142;356-358,1985)

Alzheimer’s Disease

  • Choline supplementation increases the accumulation of acetylcholine within the brain in normal patients so many researchers hypothesized that phosphatidylcholine supplementation would benefit Alzheimer patients. Some research has indicated that increasing acetylcholine content in the brain through supplemental choline might result in improved memory. However, clinical trials using phosphatidylcholine have not produced significant benefits. Studies revealed inconsistent improvements in memory from choline supplementation in both normal and Alzheimer’s patients. Nevertheless, criticisms of these studies and their interpretations have been raised on the grounds that sample size was too small, the dosage of phosphatidylcholine used was too low, and the studies themselves were poorly designed. (Rosenberg, G and Davis, KL. Am J Clin Nutr. 36; 709-720, 1982; Levy, R, et al. Lancet 1;474-476,1982; Sitaram, N, et al. Life Sci 22;1555-1560, 1978.)
  • Alzheimer’s disease is characterized by a decrease in cholinergic transmission, but the basic defect in cholinergic transmission in Alzheimer’s disease relates to impaired activity of the enzyme acetylcholine transferase, not to a deficiency of choline. Acetylcholine transferase combines choline with an acetyl molecule to form acetylcholine. However, since increased levels of choline do not necessarily increase the activity of this critical enzyme, phosphatidylcholine supplementation will probably not prove efficacious in the majority of patients with Alzheimer’s disease.
  • In a patient with mild to moderate dementia, the use of a high-quality phosphatidylcholine preparation at a dosage level of 15 to 25 g/day may be beneficial. (Murray, M. p. 140, 1996.)